

¹Princeton University ²Stanford University ³The Nueva School ⁴Google ⁵Columbia University

tidybot.cs.princeton.edu

Introduction

How can household robots learn your preferences from just a few examples?

Key insight: Summarization with LLMs can be an effective way to achieve generalization in robotics

Method

Example preferences → Generalized rules

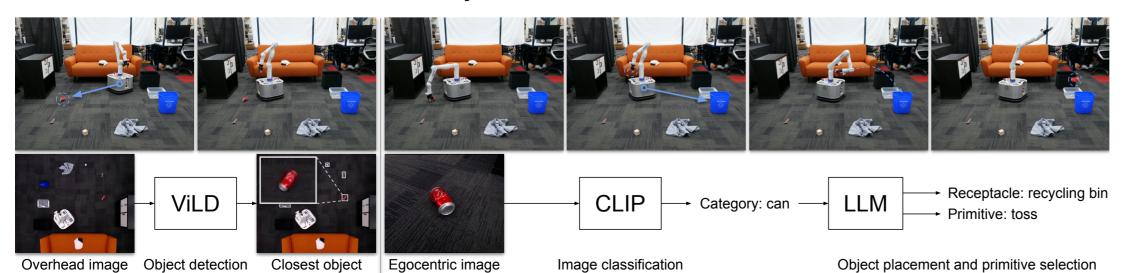
objects = ["yellow shirt", "dark purple shirt", "white socks", "black shirt"] receptacles = ["drawer", "closet"] pick_and_place("yellow shirt", "drawer") pick_and_place("dark purple shirt", "closet") pick_and_place("white socks", "drawer") pick_and_place("black shirt", "closet") # Summary: Put light-colored clothes in the drawer and dark-colored clothes in the closet.

Summarizing preferences

Summary: Put light-colored clothes in the drawer and dark-colored clothes in the closet. objects = ["black socks", "white shirt", "navy socks", "beige shirt"] receptacles = ["drawer", "closet"] pick_and_place("black socks", "closet") pick_and_place("white shirt", "drawer") pick_and_place("navy socks", "closet") pick_and_place("beige shirt", "drawer")

Placing unseen objects

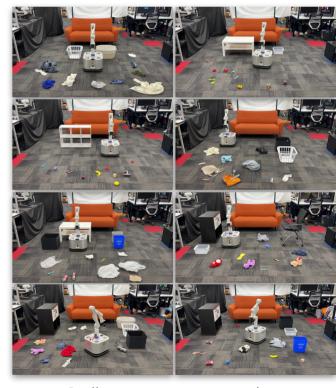
System Overview



Benchmark Results

Accuracy
45.6%
78.5%
67.5%
77.8%
83.7%
91.2%

Real-World Results



8 diverse test scenarios

70 unique objects, 11 unique receptacles

TidyBot can put away 85% of objects